

Isfahan University of Technology

Department of Material Science and Engineering

Mechanochemical Synthesis of Fe₃Al-Al₂O₃ Nanocomposite and Investigation of Its Properties

A thesis

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

By

Mehdi Khodaei

Supervisors:

M. H. Enayati F. Karimzadeh

Abstract

Fe₃Al intermetallic compound is an important class of materials because of a combination of its high tensile strength, low density, good wear resistance, ease of fabrication and low cost. It also has excellent oxidation, sulfidation and corrosion resistance at high temperature. These properties have led to the identification of several potential usages including structural applications and protective coatings in hostile environments. Two major problems that restrict the application of Fe₃Al are poor low-temperature ductility and inadequate high-temperature creep resistance. These limitations can be overcome by introducing ceramic particles as reinforcements. The goal of this work is fabrication of Fe₃Al intermetallic compound with Al₂O₃ reinforcement via mechanochemical process. The phase transformation and microstructural characterization during mechanochemical reaction were investigated by X-ray diffractometery (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) with an energy dispersive spectrometer (EDS) attached, and thermal analysis (DTA). Mechanochemical behavior of different Fe, Al, and Fe₂O₃ powder mixtures to fabrication of Fe-Al₂O₃, Fe₃Al-57 vol.% Al₂O₃ Fe₃Al-30 vol.% Al₂O₃ was studied according to the calculated adiabatic temperature of reactions, vial temperature measurement during milling, and structural investigations. Fe₃Al-57 vol.% Al₂O₃ and Fe₃Al-30 vol.% Al₂O₃ nanocomposite powders were compacted and then sintered at 1400° C for 1 h. The consolidated Fe₃Al-57 vol.% Al₂O₃ part had an ultrafine and homogeneous structure without "core-rim" feature consisting of Fe₃Al and Al₂O₃ phases. The consolidated Fe₃Al-30 vol.% Al₂O₃ part had a homogeneous and interconnected network of Fe₃Al matrix. In addition, Fe₃Al-30 vol.% Al₂O₃ was also fabricated by mechanical alloying of Fe, Al, and nano-Al₂O₃ in order to compare the effect of the addition route of Al₂O₃ phase in Fe₃Al matrix on sintering behavior and mechanical properties. The results showed that the Fe₃Al-30 vol.% Al₂O₃ fabricated through mechanochemical process had higher three-point fracture stress and hardness than Fe₃Al-30 vol.% Al₂O₃ fabricated by addition of Al₂O₃ nanopowders.